
Testing and Verification

Presented to

ATPESC 2017 Participants

Alicia Klinvex
Sandia National Laboratories

Q Center, St. Charles, IL (USA)
Date 08/09/2017

ATPESC 2017, July 30 – August 11, 20172

Outline

• Why testing is important

• Types of testing

• Best practices

• Verification

• Evaluating project needs

• How real DOE code is tested

ATPESC 2017, July 30 – August 11, 20173

Benefits of testing

3

• Promotes high-quality software that delivers correct results and
improves confidence

• Increases quality and speed of development, reducing development
and maintenance costs

• Maintains portability to a variety of systems and compilers

• Helps in refactoring

– Avoid introducing new errors when adding new features

– Avoid reintroducing old errors

ATPESC 2017, July 30 – August 11, 20174

How common are bugs?

• Bugs per 1000 lines of code (KLOC)

• Industry average for delivered software

– 1-25 errors

• Microsoft Applications Division

– 10-20 defects during in-house testing

– 0.5 in released product

Programs do not acquire bugs as people acquire germs, by hanging around other

buggy programs. Programmers must insert them.

- Harlan Mills (Code Complete, by Steven McConnell)

ATPESC 2017, July 30 – August 11, 20175

Why testing is important:
the protein structures of Geoffrey Chang

• Some inherited code flipped two columns of data, inverting an
electron-density map

• Resulted in an incorrect protein structure

• Retracted 5 publications

– One was cited 364 times

• Many papers and grant applications conflicting with his results were
rejected

5

ATPESC 2017, July 30 – August 11, 20176

Why testing is important:
the 40 second flight of the Ariane 5

• Ariane 5: a European orbital launch vehicle meant to lift 20 tons into
low Earth orbit

• Initial rocket went off course, started to disintegrate, then self-
destructed less than a minute after launch

• Seven variables were at risk of leading to an Operand Error (due to
conversion of floating point to integer)

– Four were protected

• Investigation concluded insufficient test coverage as one of the
causes for this accident

• Resulted in a loss of $370,000,000.

6

ATPESC 2017, July 30 – August 11, 20177

Why testing is important:
the Therac-25 accidents

• Therac-25: a computer-controlled radiation therapy machine

• Minimal software testing

• Race condition in the code went undetected

• Unlucky patients were struck with approximately 100 times the
intended dose of radiation, ~ 15,000 rads

• Error code indicated that no dose of radiation was given, so operator
instructed machine to proceed

• Recalled after six accidents resulting in death and serious injuries

7

ATPESC 2017, July 30 – August 11, 20178

Granularity of tests

8

• Unit tests

– Test individual functions or classes

– Build and run fast

– Localize errors

– Usually written before or during code development

• Prevent faults from being introduced

– Example: Can I correctly compute a dot-product?

If a unit test fails, you should know

exactly what is broken.

ATPESC 2017, July 30 – August 11, 20179

Granularity of tests

• Integration tests

– Test interaction of larger pieces of software

– Do not build or run as fast as unit tests

– Example: Does the preconditioner class work with the Krylov solver class?

9

ATPESC 2017, July 30 – August 11, 201710

Granularity of tests

• System-level tests

– Test the full software system at the user interaction level

– Example: Does my CFD code compute the correct solution?

10

ATPESC 2017, July 30 – August 11, 201711

Types of tests

• Verification tests

– Does the code implement the intended algorithm correctly?

– Check for specific mathematical properties

– Example

• Solving Ax=b where A has 5 distinct eigenvalues

• Does my Krylov solver converge in 5 iterations?

– Can be any granularity

11

ATPESC 2017, July 30 – August 11, 201712

Types of tests

• Acceptance tests

– Assert acceptable functioning for a specific customer

• Different from other types of tests, which don’t involve customers

– Generally at the system-level

– Example: Does my linear solver achieve the correct convergence rate for a
particular customer’s linear system?

12

ATPESC 2017, July 30 – August 11, 201713

Types of tests

• Regression (no-change) tests

– Compare current observable output to a gold standard

• Gold standard frequently comes from previous version of software

– Similar to verification tests

• Must independently verify that the gold standard is correct

– Example

• My Krylov solver took 10 iterations last week; does it still take 10 iterations?

• Does it achieve the same solution?

– Bounded change tests are better for floating point computations

13

ATPESC 2017, July 30 – August 11, 201714

Types of tests

• Performance tests

– Focus on the runtime and resource utilization

– Nothing to do with correctness

• Orthogonal to other types of tests

– Example: It took my code 10s to solve this linear system last week; does it
take longer now?

14

ATPESC 2017, July 30 – August 11, 201715

Types of tests

• Installation tests

– Verify that the configure-make-install is working as expected

– Example: Can I build and run a simple driver using my library after the library
is installed?

15

ATPESC 2017, July 30 – August 11, 201716

Good testing practices

16

• Test-driven development – acceptance tests are written before the
software

– Gain clarity on code

– Guarantees tests will exist

– Useful when testing is viewed as unsustainable tax on resources

• Provide users a regression test suite

• Test software regularly, preferably daily

ATPESC 2017, July 30 – August 11, 201717

Policies on testing practices

17

• Must have consistent policy on dealing with failed tests

– Issue tracking

• How quickly does it need to be fixed?

• Who is responsible for fixing it?

– Add regression test afterwards (to avoid reintroducing issue later)

• Someone needs to be in charge of watching the test suite

ATPESC 2017, July 30 – August 11, 201718

Policies on testing practices

18

• When refactoring or adding new features, run a regression suite
before checkin

– Be sure to add new regression tests for the new features

• Require a code review before releasing test suite

– Another person may spot issues you didn’t

– Incredibly cost-effective

ATPESC 2017, July 30 – August 11, 201719

Policies on testing practices

19

• Avoid regression suites consisting of system-level no-change tests

– Tests often need to be re-baselined

• Often done without verification of new gold-standard

– Hard to maintain across multiple platforms

– Loose tolerances can allow subtle defects to appear

ATPESC 2017, July 30 – August 11, 201720

Motivating people to write tests

• Tests protect YOU from other people from breaking your work

– If someone else’s changes break your code, they are responsible for fixing it

• Testing is cheaper and easier than debugging

• You may already have some tests lying around

– Drivers for generating conference or paper results

– User submitted bugs

– Examples

20

ATPESC 2017, July 30 – August 11, 201721

Verification

21

• Code verification uses tests

– It is much more than a collection of tests

• It is the holistic process through which you ensure that

– Your implementation shows expected behavior,

– Your implementation is consistent with your model,

– Science you are trying to do with the code can be done.

ATPESC 2017, July 30 – August 11, 201722

Examples: Tpetra verification

22

• Distributed basic linear algebra subroutines

– Sparse matrices

– Dense matrices

• Check for correct linear algebra

• Check for correct errors

– Does the program throw an exception if I try to multiply things with
incompatible dimensions?

ATPESC 2017, July 30 – August 11, 201723

Belos verification

23

• Krylov solvers

• Use problems with known solutions

– Given A and Y, generate B=AY

• Ensures B is in the range of A

– Solve AX=B

• Some tests use Belos matrix and vector classes

• Some tests use Epetra/Tpetra classes

• Test with and without preconditioning

– Left and right

ATPESC 2017, July 30 – August 11, 201724

Anasazi verification

24

• Eigensolvers

• Use problems with known solutions

– Generated using Matlab’s sprand

– Problems with analytic solutions

• Discretization of the Laplace operator

• Measure the residual of the computed eigenvectors

– 𝑅=𝐴𝑋−𝐵𝑋Λ

• Number of iterations are compared to a gold standard

ATPESC 2017, July 30 – August 11, 201725

Zoltan(2) verification

25

• Graph partitioning

– Some Sandia-developed code

– Some TPL wrappers

• Gold standard solutions

– Labor intensive

– Gold standard changes when algorithms change

– Upgrades to a TPL such as ParMETIS require gold standard to be updated

• Uses metrics to determine whether the solution is correct

– Edge cuts

– Balance criteria

ATPESC 2017, July 30 – August 11, 201726

SuperLU verification

26

• SuperLU – sparse Gaussian elimination code

• Test suite

– Many unit and integration level tests

– Entire suite can be run in a few minutes

– Demonstrates validation and acceptance testing, also no-change or bounded-
change testing

– Demonstrates how to deal with floating point issues

ATPESC 2017, July 30 – August 11, 201727

SuperLU test suite

27

• Suite has two main goals

– Tests query functions to floating-point parameters

• Machine epsilon, underflow and overflow thresholds, etc

– Provide coverage of all routines

• Tests all functions of the user-callable routines

ATPESC 2017, July 30 – August 11, 201728

SuperLU test suite

28

• Many input matrices are generated

– Different numerical and structural properties

• Uses several numerical metrics to assert accuracy of solution

– Stable LU factorization

– Small forward and backward errors

ATPESC 2017, July 30 – August 11, 201729

Example: SuperLU test suite

29

• Performs exhaustive testing of a large number of input parameters
For each set of valid values {

For each set of valid values {
...
For each set of valid values {

For each matrix type {
Generate the input matrix A and rhs b;
Call a user -callable routine with input values {, ,é, };
Compute the test metrics;
Check whether each metric is smaller than a prescribed threshold;

}
}
...

}
}

• Runs over 10,000 tests in a few minutes

ATPESC 2017, July 30 – August 11, 201730

Why not always use the most stringent testing?

30

• Effort spent in devising tests and testing regime are a tax on team
resources

• When the tax is too high…

– Team cannot meet code-use objectives

• When is the tax is too low…

– Necessary oversight not provided

– Defects in code sneak through

ATPESC 2017, July 30 – August 11, 201731

Evaluating project needs

31

• Objectives

– Proof of concept

– Limited research use

– Library

– Production – simulations and analysis

• Team

– Number of developers

– Background of developers

– Geographical spread

ATPESC 2017, July 30 – August 11, 201732

Evaluating project needs

32

• Lifecycle stages

• Lifetime

– How long a code is expected to live

– New code versus some legacy components

• Complexity

– Number of modules, models, data structures, solvers

– Degree of coupling and interoperability requirements

ATPESC 2017, July 30 – August 11, 201733

Commonalities

33

• Unit testing is always good

– It is unlikely to be sufficient

• Verification of expected behavior

• Understanding the range of validity and applicability is always
important

– Especially for individual solvers

ATPESC 2017, July 30 – August 11, 201734

Consider the project scope

34

• Proof of concept
– Nothing more than the common testing of previous slide

• Limited use
– Manually run test-suite before each use may suffice

• Coverage is still important

• Library
– Depends on team and complexity

• Regular simulation and analysis
– Depends on team and complexity

– Testing coverage needs system level integrated coverage

ATPESC 2017, July 30 – August 11, 201735

Customizing for project needs: Team

• One to two developers – periodic manual testing and verification

• Mid-size to large team – automated test suite running regularly

• Subgroups within the team – automated test suite with tests of
different granularity

– May also need multiple suites run on their own schedules

35

ATPESC 2017, July 30 – August 11, 201736

Other factors

• Frequency of testing depends upon lifecycle stage

– Mid-size to large team working on the same code component doing rapid
development – ideally continuous integration

– Stable mature code - regular automated testing

– Refactoring – needs its own strategy

• Complexity and lifetime

– Affect the testing regime being devised

– Testing needs and strategy differ when code incorporates legacy components

36

ATPESC 2017, July 30 – August 11, 201737

Maintenance of a test suite

37

• Testing regime is only useful if it is

– Maintained

– Monitored regularly

– Has rapid response to failure

• Maintenance includes

– Updating tests and benchmarks

– Adjustments to software stack

– Archiving and retrieval of test suite output

• Helpful in tracing change in code behavior

ATPESC 2017, July 30 – August 11, 201738

Maintenance of a test suite

38

• Monitoring individual tests manually is unreasonable and should be
automated

– Manual inspection should be limited to failing tests

– For repository code, failure can be correlated to check-ins within a particular
time-frame

• Only certain developers need to be involved

ATPESC 2017, July 30 – August 11, 201739

Maintenance of a test suite

39

• Tests should pass most of the time

– Easy when code changes are infrequent

– Harder when code is large and rapidly changing

• Difficult to determine cause of failure

• Pre-commit test suites are a good idea

ATPESC 2017, July 30 – August 11, 201740

Maintenance of a test suite

• Periodically review collection of tests

– Look for gaps and redundancies

– Pruning is important to conserve testing resources

– Deprecated features can be removed

– New tests may be necessary when new features are added

40

ATPESC 2017, July 30 – August 11, 201741

Selection of tests

• Important to aim for quick diagnosis of error

– A mix of different granularities works well

• Unit tests for isolating component or sub-component level faults

• Integration tests with simple to complex configuration and system level

• Some rules of thumb

– Enable quick pin-pointing

– Coverage

For a large code experience with test selection see Dubey et al 2015

41

http://onlinelibrary.wiley.com/doi/10.1002/spe.2220/full

ATPESC 2017, July 30 – August 11, 201742

Examples

SC Tutorial, November 14,

2016

42

• From Alquimia, amanzi and Trilinos

• Focus on different team sizes and objectives

• Different lifetime spans

ATPESC 2017, July 30 – August 11, 201743

How is real DOE code tested?

43

How many

developers?

How much

code?

How frequent

are changes?

Alquimia < 1 FTE O(1,000)

lines of code

Every few

months

Amanzi About a

dozen

O(100,000)

lines of code

A few commits

every day

Trilinos A few dozen O(1,000,000)

lines of code

About 12 per

day

ATPESC 2017, July 30 – August 11, 201744

What is Alquimia?

44

• Biogeochemistry API and wrapper library

• Provides a unified interface to existing geochemistry engines

– CrunchFlow

– PFLOTRAN

• Allows subsurface flow and transport simulators to access a range of
functionality

• NOT an implementation of a biogeochemistry reaction library

• Does NOT perform geochemical calculations

ATPESC 2017, July 30 – August 11, 201745

How is Alquimia tested?

45

• Continuous integration testing using Travis CI

• Works for them because

– Alquimia builds fast

– Test suite runs fast

– Commits happen in short bursts

ATPESC 2017, July 30 – August 11, 201746

What is Amanzi/ATS?

46

• Amanzi

– A parallel flow and reactive transport simulator

– Used to analyze multiple DOE waste disposal sites

– Example application: modeling hydrological and biogeochemical cycling in the
Colorodo River System

• Carbon cycling is especially important because of its role in regulating atmospheric CO2

ATPESC 2017, July 30 – August 11, 201747

Amanzi/ATS testing practices

47

• 156 tests that can be run via “ctest”

– No continuous integration, but developers are expected to run the test suite
before committing

• New physics contributions are required to come with new system-
level tests

• Various granularity tests

ATPESC 2017, July 30 – August 11, 201748

Amanzi/ATS testing granularity

48

• Unit tests

– Code is highly componentized

• Medium-grained component tests

– Discretizations

– Solvers

• Coarse-grained system-level tests

– Test full capability

– Serve as example for new users

ATPESC 2017, July 30 – August 11, 201749

What is Trilinos?

• A collection of libraries intended to be used as building blocks for the
development of scientific applications

• Organized into 66 packages

– Linear solvers

– Nonlinear solvers

– Eigensolvers

– Preconditioners (including multigrid)

– And more!

49

ATPESC 2017, July 30 – August 11, 201750

How is Trilinos tested?

• Trilinos has 1500 tests between its 66 packages

• Developers are strongly advised to run a checkin test script when
committing

• Automated testing on a variety of different platforms

50

ATPESC 2017, July 30 – August 11, 201751

Checkin test script

51

• Detects which packages were modified by your commits

• Determines which packages you potentially broke

• Configures, builds, and tests those packages

– On success, pushes to repo

– On failure, reports why it failed

• Useful for ensuring your changes don’t break another package

• May take a while, but many people run it overnight

ATPESC 2017, July 30 – August 11, 201752

Why do we do automated testing if everyone uses the checkin
script?

• May test a different set of packages

• May test different environments
– Do your changes work with Intel compilers as well as GNU?

– Do your changes work on a mac?

– Do your changes work with CUDA?

• Identifies a small set of commits that could have broken a build or
test
– Identifies the person who knows how to un-break it

• Bugs are easier to fix if caught early

52

ATPESC 2017, July 30 – August 11, 201753

What if “bad people” don’t use the checkin script?

53

• Their commit doesn’t include the checkin script information

ATPESC 2017, July 30 – August 11, 201754

Trilinos automated testing

54

ATPESC 2017, July 30 – August 11, 201755

Trilinos automated testing

55

ATPESC 2017, July 30 – August 11, 201756

Trilinos automated testing

• Several Amesos2 (direct solver) tests are broken

• Are any of its dependencies broken?

– Yes, there is a broken Epetra (basic linear algebra) test

– Maybe this broke Amesos2?

ATPESC 2017, July 30 – August 11, 201757

Trilinos automated testing

• Which tests were broken in Amesos2?

ATPESC 2017, July 30 – August 11, 201758

Trilinos automated testing

• If you may have broken something, you will get an email about it

58

ATPESC 2017, July 30 – August 11, 201759

New master/develop workflow

• Want master branch to remain stable

• All developer changes are now pushed to develop branch

• If changes are “okay”, merge develop to master

– Currently a manual process for Trilinos framework team

– If no new tests are failing on the dashboard, merge

– Will eventually be automated

59

An important consideration: commits are so frequent, and the test suite is so

large, it is impractical to run the test suite after each commit.

ATPESC 2017, July 30 – August 11, 201760

Summary

• Software testing is very important

• There are different types of tests

• Different projects will have different needs

• We will resume our talk of software testing after the break

– Code coverage

– Continuous integration testing

ATPESC 2017, July 30 – August 11, 201761

Thank you for your attention!

